Days Before Blackouts, One Texas Power Giant Sounded the Alarm

(Bloomberg) — Vistra Corp., one of the largest power generators in Texas, said it warned state agencies days before cascading blackouts plunged millions into darkness that internal forecasts showed electricity demand was expected to exceed supply.

Despite the warning, “the coordination and planning by authorities across the broader energy sector were seemingly disproportionate to the severity of the situation,” Vistra said in an emailed statement late Sunday. The company didn’t identify which state entities it contacted. The Electric Reliability Council of Texas is the state’s grid operator, while the Texas Public Utility Commission regulates power generators.

Ercot said in a statement its “operating notices incentived all available generation to serve customers” and didn’t immediately comment on the Vistra letter. Andrew Barlow, an official with the PUC, said he wasn’t privy to any correspondence between the agency and Vistra and referred the matter to Ercot.

“Days ahead of this event, Vistra and others forecasted insufficient generation would be available, and we began winter emergency preparations,” the statement said. “The warning signs were there, but the public was unaware of the gravity of the situation, which led to people being unable to respond and make the necessary adjustments for their families.”

Vistra shares rose 1.1% before the start of regular trading Monday in New York.

Read more: How Extreme Cold Turned Into a U.S. Energy Crisis: QuickTake

At its peak, more than 4 million Texans were without power over several days of unprecedented cold. Dozens have perished in the wake of what has now become known as the largest forced power outage in U.S. history. Even when electricity was restored as temperatures rose, millions remained without safe drinking water after power outages hit treatment plants and water pumps used to pressurize lines.

Texas’s Power Grid Disaster Is Only The Beginning

Texas’s Power Grid Disaster Is Only The Beginning

ATTENTION NEWS JUNKIES: We are the new Drudge, click here for the News Feed 


Record-setting cold and snowfall in Texas has in turn caused dramatic power outages and rolling blackouts across the state. Texans stuck in powered-off apartments with no way to warm themselves have fled to “warming centers.” A few have died from carbon monoxide poisoning trying to warm themselves with a car.

The mess with the Texas power grid is only the beginning. In the years to come, American infrastructure will fail more and more often, as America becomes less capable of maintaining the core elements of a First World country.

Why would America become less First World? That’s a simple question to answer: Because America is making itself less First World.

Conservatives have been eager to blame Texas’s problems on increased use of wind power. It certainly played a role. Turbines froze in the cold and the focus on expanding renewable energy sources over conventional gas and oil left the state less able to expand energy production in response to a surge.

But solar energy is far from the only culprit. Another factor was simply that Texas infrastructure could not handle an outlier weather event.

While ice has forced some turbines to shut down just as a brutal cold wave drives record electricity demand, that’s been the least significant factor in the blackouts, according to Dan Woodfin, a senior director for the Electric Reliability Council of Texas, which operates the state’s power grid.

The main factors: Frozen instruments at natural gas, coal and even nuclear facilities, as well as limited supplies of natural gas, he said. “Natural gas pressure” in particular is one reason power is coming back slower than expected Tuesday, added Woodfin.

“We’ve had some issues with pretty much every kind of generating capacity in the course of this multi-day event,” he said. [Bloomberg]

In other words, faced with a black swan event, Texas’s power generation system imploded. It faced a major challenge, and wasn’t up to it. The cost is several lives and billions of dollars in economic damage.

Texas’s struggles are only a standout example of a problem that has been building up for years. Last summer, California suffered rolling blackouts because electrical providers were unprepared for a surge in demand during a heat wave. But the problem is greater than that. America’s electrical reliability has been declining, almost everywhere, for decades. The United States of America now trails competing nations, often dramatically.

In Japan, the average home sees only 4 minutes of power outages per year. In the American Midwest, the figure is 92 minutes per year. In the Northeast, it’s 214 minutes; all those figures cover only regular outages and not those caused by extreme weather or fires.

A 2012 report from the Congressional Research Service compared average annual minutes lost to power outages in the U.S. with seven industrialized European countries. The U.S. finished a distant last (on the chart, SAIDI measures minutes lost to power outages per year):

Sometimes, when America trails in an important measure of productivity or effectiveness, it has simply failed to keep up with the advances of other countries. But power supply is different. Forty years ago, America had no trouble keeping the lights on. It has steadily gotten worse at this basic function. A recent Popular Science article laid out the problem:

According to an analysis by Climate Central, major outages (affecting more than 50,000 homes or businesses) grew ten times more common from the mid-1980s to 2012. From 2003 to 2012, weather-related outages doubled. In a 2017 report, the American Society of Civil Engineers reported that there were 3,571 total outages in 2015, lasting 49 minutes on average. The U.S. Energy Administration reports that in 2016, the average utility customer had 1.3 power interruptions, and their total blackout time averaged four hours. [Popular Science]

What causes this? One popular answer is simply aging infrastructure. America was one of the first countries to build a modern power grid, so infrastructure in many areas is very old and now fails with increasing frequency.

Of course, that naturally raises the question. If infrastructure is aging, why isn’t it being updated or replaced?

That is a political question, with many answers. One reason is that maintaining existing infrastructure may be the single least-sexy use of public money, and thus is one of the first things cut back during budget crunches. Another factor, though, is America’s warped public spending. For decades, politicians have found it easy to build up a political base by upping the pay of public employees. The result is that, while enjoying rock-solid job security, public employees at all levels outearn private sector workers. Millions of current and former workers are also the beneficiaries of ridiculously generous pension plans which are routinely underfunded as well. When these pensions clash with basic infrastructure maintenance, the pensions win:

In real dollars, state governments’ investments in infrastructure dropped by 3.2 percent from 2007 to 2017, with ups and downs along the way. But infrastructure spending relative to gross domestic product (GDP) dropped almost every year between a 2009 peak and 2017, following more than two decades of stability. In fact, 2017 marked the lowest level of funding as a share of the economy in more than half a century. States’ declining infrastructure investment relative to GDP is a sign that spending on fixed assets has not kept pace with economic growth. [Pew Trusts]

But infrastructure isn’t just about allocating enough funding. It’s about people. The quality of a country’s broad-based infrastructure is heavily linked to the skills of its common blue-collar workers and local bureaucrats. When these groups are more capable, everything works a little bit better in a country. They cut fewer corners when building new infrastructure, and are more diligent in maintaining it. They work more diligently and efficiently. They are more likely to use the right materials. They avoid preventable errors.

For an example of a completely avoidable infrastructure calamity, look at Flint, Michigan. The city’s famous water crisis occurred when the city switched from Detroit’s water system to drawing water from the Flint River. The river water was perfectly safe to drink, but left untreated it corroded the protective lining of the city’s pipes, eventually allowing lead to leech into the water. And tragically, avoiding that problem was easy.

Cities such as Detroit add orthophosphate to their water as part of their corrosion control plans because the compound encourages the formation of lead phosphates, which are largely insoluble and can add to the pipes’ passivation layer. By press time, C&EN was unable to get a comment from Flint city officials about why a corrosion inhibitor wasn’t added to the river water. The entire Flint water crisis could have been avoided if the city had just added orthophosphate, Edwards says. [Chemical and Engineering News]

Adding orthophosphate would have cost Flint only a few thousand dollars a year. Instead, a $600 million calamity happened.

Another red flag for America’s infrastructure future is the Washington, D.C. Metro. The Metro has been known for years as one of the world’s worst, plagued with delays, safety issues, cost overruns, and poor maintenance.

By the early 2000s, workers began to notice a growing disregard for safety throughout Metro. “We’d report [safety violations] and then nothing would be done,” says Sherman Johnson, a WMATA mechanic from 1983 to 2010. “The [work order] would be closed, indicating that the problem had been corrected, but then you’d go and check and most times no one had even been there, let alone fixed anything.” Meanwhile, management focused on making sure employees wore their uniforms correctly and used Metro-issued microwaves to cook food instead of their own.

This wasn’t the only troubling thing the feds found in Metro’s plumbing. The FTA discovered that train drivers regularly relieved themselves on the tracks because supervisors, due to inadequate training, weren’t comfortable taking the wheel to give them bathroom breaks. [Washingtonian]

How did the Metro get so horrid? In large part, because of wretched hiring. A 2012 report in The Washington Times revealed that Metro hiring was starkly racialized, with applicants clearly being hired or rejected based on skin color rather than demonstrated job aptitude:

Ninety-seven percent of the bus and train operators at the Washington Metropolitan Area Transit Authority are black, with only six white women out of more than 3,000 drivers … It is a culture in which a white male engineer near completion of a Ph.D. was passed over for a management position in favor of a black man who was barely literate, multiple staffers said. … Dozens said white workers, especially women, were openly subject to racist and sexist remarks without repercussion — behavior that drove many targets to seek transfers or leave the agency. All said they have been inexplicably passed over hundreds of times for promotions to positions such as station manager while others with less seniority passed them by. [Washington Times]

Why do Metro’s particular failures matter? Because its rotten ethos is spreading across the country. While Metro is an outlier case, where a major public agency became a racial racket, countless agencies are adopting “diversity” guidelines that encourage choosing employees and contractors based on skin color rather than competence alone. When ability and effectiveness ceases to be the sole consideration for jobs, effectiveness suffers. That may not matter much for writers at The New York Times, where the only victims of affirmative action (besides whose passed over for jobs) are the paper’s readers. But for the basic buildings blocks of civilized life, the consequences can be severe.

There are other reasons to be worried about America’s future supply of builders, technicians, and repairmen.

For decades, America’s ruling elite have deliberately cultivated an underclass via low-skill immigration, both legal and illegal. While they were brought here as workers, these immigrants are people as well: Their children are the future human capital stock of the United States. When America admits an immigrant with fewer skills than the average American, they are admitting a person whose children will, on average, grow up to have fewer skills than most American workers. They will certainly have fewer skills than the children of the highly-skilled immigrants America has chosen not to prioritize.

The Trump Administration sought to change this, promoting a plan to focus immigration on highly-skilled workers who would have more highly-skilled children. Congress refused to pass that plan. Now, the Biden administration is mulling amnesty for low-skilled illegal immigrants, and is pledging to octuple arrivals of (mostly low-skill) refugees. If Biden succeeds, he will create an America where the population is less skilled, and less able to maintain the basic trappings of modern life. And that may mean a country where the lights go out a lot more often.

Rothschild – unreliable renewables and deploys more Lithium Ion Batteries

Dive Brief:

  • Industry players in California are planning to create a 550 MW distributed clean power plant, based off a network of hundreds of thousands of California homes and the millions of smart devices within. The power plant will serve both as a model for the clean energy grid of the future, as well as a way to reduce the risk of blackouts next summer, according to OhmConnect CEO Cisco DeVries.
  • Meanwhile, Southern California Edison has signed contracts for an additional 590 MW of battery energy storage in a bid to boost electric system reliability, bringing the amount of battery storage it has procured to more than 2 GW, the utility announced Monday.
  • “It’s paramount that we achieve full reliability,” California Energy Commission Chair David Hochschild said at a press conference announcing the virtual power plant Monday, especially given the state’s push to electrify vehicles, rails and buildings, now that 40 cities in the state have adopted some form of an electrification preference or mandate for new construction.

The Energy Transition: Innovation Through Investment

Learn why investments in renewable energy skyrocketed in 2020, and are continuing to grow.Learn more

Dive Insight:

The focus on bolstering grid reliability in California comes in light of the possibility of capacity shortfalls over the next few years, as well as rolling blackouts that affected the state this August during a record-breaking heatwave. 

The state is taking a number of actions to promote reliability, Hochschild said, including a tenfold increase in the amount of energy storage going online next year, new efficiency and load management standards and procuring more clean energy resources.

“There’s not one silver bullet here — it’s really silver buckshot,” Hochschild said, adding that the planned distributed clean power plant is an important piece of that.

SCE’s storage procurements are also part of a broader reliability solution. 

SCE kicked off a bid for system reliability resources last year following a California Public Utilities Commission (CPUC) decision requiring the utility to procure nearly 1.2 GW of capacity that could come online between 2021 and 2023. The utility’s own analysis has indicated that the state needs to add 30 GW of utility-scale storage and 10 GW of distributed storage to meet its carbon goals. 

Earlier this year, SCE announced plans to procure a package of battery resources totaling 770 MW/3,080 MWh, as part of that effort to address potential capacity shortfalls in the state, especially as several gas plants are slated to retire over the next few years. 

The new slate of contracts includes three utility-scale lithium-ion battery projects, totaling 585 MW as well as a 5 MW demand response project that will draw energy from customer-owned storage resources. 

“Bringing more utility-scale battery storage resources online will improve the reliability of the grid and further the integration of renewable generation resources, like wind and solar, into the grid,” said William Walsh, vice president of energy procurement and management at SCE, in a press release.

All the projects are subject to CPUC approval and are scheduled to come online by August 2022 and 2023. 

The 550 MW distributed power plant, meanwhile, is being developed by Sidewalk Infrastructure Partners along with OhmConnect, and is slated to be the largest distributed clean power plant in North America. The plant could provide 5 GWh of energy conservation at scale, the equivalent of not burning 3.8 million pounds of coal, the companies say. 

Following the August blackouts, California regulators identified demand response measures as an important tool to prevent similar outages in the future; between Aug. 13 and Aug. 20, OhmConnect was able to reduce energy usage by nearly one GWh, and compensated customers $1 million to do so.

Although federal and state policies make it clear that a reduction in a kWh is the same as the production of a kWh and should be treated the same in the market, it’s been hard to translate that into a utility-scale, reliable format, DeVries said at the press conference. 

And OhmConnect doesn’t think this is just a California phenomenon — they’re planning to do some work in Texas next year, and eventually see how the technology can be spread across the country, especially where more renewables are coming online and grid operators are facing the challenges of intermittency and changing weather.

EMERGENCY – ALERT We WILL Soon Be Plunged into Darkness the Power Grid is Under Attack!

EMERGENCY – ALERT We WILL Soon Be Plunged into Darkness the Power Grid is Under Attack! Black Sky Event – Emergency All-Sector Response Transnational Hazard “EXERCISE” 

The Grid is the largest machine in the world,Did You Know That?  THE GRID HAS BEEN “INTENTIONALLY” ALLOWED TO  COLLAPSE


(aka The Use of Weather Control Technologies)We WILL ALL Experience Prolonged Power Outages


There will be NO ACCESS to Electricity, Water and Gas 

WAR On The GRID Will Continue NO Matter Who Wins The Election. We are Only ONE Grid Crisis Away from the MOST  Devastating Crisis Our Country Has Ever Faced.  The U.S. Federal Energy  Regulatory Commission (FERC) and the National Academy of Science AGREED:  America’so verloaded power grid operates with dangerously few spare transformers – antique transformers that are scarce and hard to get. Without Power – Virtually Every Modern Convenience Goes Away 

WARNINGWATER and FOOD will run out.  

People will turn to looting, robbing and stealing – as
        conditions escalate bottled water and food will not be

available . . .

We can Only Survive a few days without water – as people get desperate they will likely start drinking from

unfiltered, dirty water sources.  

Then comes the inevitable “mass outbreaks” of water-borne sickness and disease. Please get to Pure Clean and a Renewable Water Source – NOW, while you still are able to! Go to

The video below is VERY critical and discloses the “Scenario Plan” to take down The POWER GRID  – WORLDWIDE . . .This is MOST VITAL  . . 

We will soon be Plunged into Darkness – this has ALREADY started.

Our Electric Grid is a Weapon and will be used to hold us hostage, force relocations due to peoples inability to access electricity and water on their properties.  The health departments will identify and red tag (deem uninhabitable) properties that do not have electricity or water as unhealthy and unsafe for occupancy. The health orders WILL force those people occupying unsafe properties to relocate where there is potable water or reused (sewer to tap water) distributed from wastewater treatment plants. 

 IMAGINE Being Without Electricity For An Extended Period of Time . . . OR Being Without Electricity Because You Have “Used Up Your Quota’? Most People Are NOT Aware That The Power Grid is Aging and VULNERABLE. FEW KNOW THE REAL STORY OF HOW THE GRID IS GOING TO BE USED TO HOLD COUNTRIES HOSTAGE – In the not to distant future. The video will disclose th methods that the power grid WILL be attacked. The Longer the Power Stays OFF – The Weaker and Weaker Societal Order Becomes YOU MUST BE PREPARED –



Plunged into Darkness – a PLANPower OFF –
Plunged into Darkness – a PLAN

“Securing the Meta-Grid” Meeting Cancelled Until 2021 Due to Covid – Royal Society of Arts, London / Tel Aviv University, Tel Aviv

“Securing the Meta-Grid” 

Meeting Cancelled Until 2021 Due to Covid  

Royal Society of Arts, London / Tel Aviv University, Tel Aviv

Coordinated Black Sky Resilience:

“Securing the Meta-Grid”

Assessing Progress; Considering (Essential) Next Steps 

Today’s communities are sustained by unprecedented technology, and by the all-sector hyper-connectivity it has enabled:

By the “meta-grid,” which has transformed our world.

However, this new reality is not yet matched by the coordinated all-sector resilience essential for our communities to survive a complex catastrophe.

Next Summit

EIS Summit XI Bicontinental Postponed The Eleventh Annual World Summit of Infrastructure Security, will be postponed until Summer 2021 due to travel restrictions related to the COVID-19 outbreak.

Summer, 2021Royal Society of Arts, London / Tel Aviv University, Tel Aviv

Black Sky – Executive Steering Committee EIS Council • EIS Council \ EPRO

The EPRO® SECTOR Executive Committee Roster

EPRO SECTOR is providing a forum for cross sector coordination addressing Black Sky Hazards.  The government agencies, companies and other organizations listed below have become important contributors to EPRO SECTOR Executive Committee, and the cross sector, Black Sky coordination and planning process it hosts. 

  • Electric Utilities
  • Other Utilities
  • Government Organizations
  • Non-Governmental Organizations
  • Scientists & Engineers
  • Foundations & Community Leaders
  • Trade Associations, Commissions, and Think Tanks
  • Public Utility Commissions

POWER OUTAGE: The EARTH EX® Black Sky Hazard Simulation Project (the Black Sky Project) EIS Council • EIS Council \ EPRO Handbook

                Facilitated – Consensus – Events Imagined


Facilitated tabletop exercises addressing Black Sky Hazards to critical infrastructures.

The EARTH EX®  Black Sky Hazard Simulation Project (the Black Sky Project) is a moderated exercise series – a facilitated environment to consider impact and recovery from severe Black Sky Hazards – addressing national power grids and other critical infrastructures.  The project exercises resilience and response recommendations from EPRO and other government and corporate planning initiatives, serving both as a “laboratory” –  validating, refining and supplementing recommendations; and as an educational tool – a resource to help utilities and their partners with communication, training and consensus building.
In an actual crisis scenario, utility and emergency agency managers who live through the crisis often document their takeaway “lessons-learned,” to guide improved resilience and response plans for future, similar crises. 
Black Sky Project exercises make possible a similar learning process, without living through an actual crisis.  These adaptable, multi-sector or sector-unique facilitated tabletop exercises are designed to develop “lessons-imagined” for resilience and emergency response strategies addressing Black Sky Hazard scenarios.          

Are microgrids the answer to California’s grid woes?


Andy Tang, Vice President – Energy Storage and Optimization, Wärtsilä


Sept. 9, 2020

When all is said and done, we may look back on 2020 as the key inflection point in the global transition to a more flexible, resilient, and renewable grid. In August, I wrote in Utility Dive how the European experience during the pandemic is demonstrating how high renewable penetration, flexible electricity markets will function in the not too distant future.

The recent experience in California offers another glimpse into the emerging challenges facing utilities and grid operators as they work to keep the lights on with an increasingly climate-strained electric grid.

You are no doubt familiar with California’s recent troubles. But the synopsis is this: a heatwave that saw temperatures climb into triple digits had two compounding effects on the power grid, resulting in the first rolling blackouts in California since the 2001 energy crisis. The first was on demand. As temperatures rose, Californians cranked up the air conditioning, increasing demand for power. But the extreme temperatures had an impact on the ability of gas-fired generators to reliably deliver power, with several even shutting down just as demand was peaking. Combined with the evening decline of solar generated power, the California Independent System Operator president called this a “perfect storm” grid event.

What does this experience portend for the future of a grid increasingly threatened by extreme weather events, such as heatwaves, wildfires, hurricanes and more?

Microgrids – the ability to isolate and maintain reliable power supply to critical load centers – are a potential solution to many of the safety and reliability challenges facing utilities today. The wildfire-necessitated public power shutoffs in PG&E’s service territory in recent years offer an interesting possibility. By cutting power on high-risk distribution and transmission lines, anything downstream will lose power. With a battery-storage enabled microgrid, critical load pockets such as hospitals would isolate from the grid. Now disconnected from the grid, that isolated system would then form its own grid, managing frequency and voltage.

While the microgrid concept is not new, it has proven a challenge to materialize in the real world. This is because the energy storage technology required to form microgrids add complexity in the operation, optimization and orchestration of grid assets that does not exist with traditional centralized assets.

At Wärtsilä, our GEMS energy management software platform optimizes the performance of individual energy storage and grid integrated assets. But from the beginning, we’ve always seen our platform as more than a single power plant controller. We developed our software from the ground up to be cloud based where a single power plant or storage asset would act as a single node on a network with multiple nodes. Batteries add significant value to grid operators, but they also add complexity. A network consisting of assets from different technology providers will have different command and operation protocols. Batteries require much more active management than a traditional utility asset. Temperatures must be monitored to prevent thermal runaway. State of charge must be constantly managed to ensure long-term safe operation. Utilities already manage hundreds of thousands of data points. Managing the operation of different battery technologies, with varying thresholds for safety and discharge levels, is simply unrealistic.  

We saw that as utilities added these new distributed storage assets that there was a need for a control room tool that could orchestrate these resources in a technology-agnostic way. This was the genesis of our GEMS Fleet Director platform. Fleet Director provides centralized, real-time visibility and control into a global fleet of power plants. It is a cloud-based platform that allows for secure monitoring of equipment, operation history, and alarms from the fleet, power plant, and device level. Combining power plant data aggregation, weather forecasts, region specific market data, renewable and load forecasting, Fleet Director brings unparalleled intelligence to the operation of utility assets. 

Utilities have found particular value in Fleet Director’s ability to seamlessly take energy storage assets from grid control to microgrid control. That level of control has proven to be the missing piece of the puzzle in making microgrids truly viable. Having the capability to keep assets on the grid during normal operations and isolate and manage critical load at the local level during high risk events gives grid operators a level of flexibility and resiliency previously unavailable.   

With the control that Fleet Director offers, multiple distributed storage systems can bond together and act as one resource. This is the future that my colleagues at Wärtsilä are working toward for California and beyond as more storage is added to the grid: a flexible, resilient, and distributed fleet of assets that utilities can isolate and safely operate during high-risk weather or grid events while maintaining service to the most critical load.     

What do regulators want most from grid modernization proposals? A compelling business case | Utility Dive

What do regulators want most from grid modernization proposals? A compelling business case

The following is a contributed article by Abigail Anthony, a commissioner with the Rhode Island Public Utilities Commission.

Some utilities are seeking regulators’ preapproval of massive grid modernization projects, including advanced metering functionality. Near-term preapproval to invest in broad grid-modernization projects will not occur unless utilities focus on developing — jurisdiction by jurisdiction — the most critical requirement for regulatory preapproval: a compelling business case.

Regulators are not typically the entity making investment decisions. Traditionally, utility executives make investment decisions. Later, regulators allow cost recovery in rates if investments can be shown to be prudent and used and useful (among other requirements). This system provides essential ratepayer protection, but the risk of disallowance can render utilities reluctant to make capital-intensive investments.

Due to the nature of grid modernization investments — expensive, hard-to-quantify benefits, rapidly changing technology, complicated in function — utilities are understandably reluctant to take on the burden of proof in an after-the-fact review that these investments were prudent and are used and useful. By asking for some form of pre-authorization, utilities are shifting the risk of their investment decisions away from shareholders and onto regulators, and ultimately, the ratepayers.

Regulators should, at a minimum, review these requests like prudent potential business investors, not like innovators.

High expectations

There is broad enthusiasm (and high expectations) for grid modernization and its potential to deliver a more flexible, reliable, resilient, secure and sustainable electric system. Observing all this enthusiasm, utilities might think that regulatory approval of grid modernization investments would come easily. Meanwhile, stakeholders may be frustrated by regulatory processes and principles they perceive as unsuitable and standing in the way of an advanced electric grid that will help achieve our most important policy goals.

As a consumer, I’m excited about the potential of grid modernization and frustrated by how difficult it is to advance. As a regulator, I am steadfast in what I need to conduct my duty.

Enthusiasm and frustrations will not reduce the need for the evidence regulators require before approving billions of dollars in investments to be recovered in monopoly rates. Utility regulators cannot be sold on visionary rhetoric that is better suited for other forums. Regulators need what any prudent investor needs: a clear, complete and well-evidenced business case.

Here are the key components of a utility’s business case to its regulators: need, value and accountability.

Utilities must establish that there is or will be an unmet need for the investment. Will the investment solve a power system problem, address a statutory requirement, or meet customer demands? The business case should describe the functionalities the utility seeks, the options considered, and justify the preferred solution. The centerpiece of this case should be a clear and reasoned rejection of the “do nothing” scenario. 

When faced with a request for preapproval, regulators will be keenly aware they are making an investment decision with someone else’s money and resources. If the business case leaves regulators believing that doing nothing is a viable and prudent decision, utilities and stakeholders should expect many regulators to choose that path.

Demonstrating value

To demonstrate the value of the investment, the business case should provide what the regulators consider a full and appropriate benefit-cost analysis.

The surest way to convince me an investment has value is to provide quantitative evidence that the proposed investment will reduce the cost of the power system and save customers money on their electric bills. My jurisdiction also considers benefits and costs outside the power system, such as the societal costs of greenhouse gas emissions. These benefits and costs are important to consider, but they are only part of demonstrating value, which is only part of a business case.

Utilities and stakeholders should not expect that projects will be approved primarily or solely on the strength of societal benefits. If the value of an investment is predicated on societal benefits, utilities may require a stronger needs case to gain regulators’ approval. Otherwise, if an investment provides no power system value and meets no power system need, of what use is it to ratepayers?

Importantly, the business case should explain what is within the utility’s control and where the utility can and cannot be held accountable. A good business case should present transparent and meaningful accountability for the success of what is within the utility’s control. If regulators are going to step in the shoes of the investor, preapprove investments, or relax post-investment reviews, there must be an equal trade-off with predetermining the responsibility for certain outcomes and the consequence if these outcomes are not provided.

In fairness to ratepayers, the model of preapproving utility investments should come with preapproval of firm, meaningful accountability. Here is where there is work for stakeholders; rather than aid the utility in selling grid modernization to regulators, stakeholders should independently make sure the utility’s plan will meet their expectations on a reasonable timeline. Otherwise, ratepayers may not get what they paid for.

Grid modernization has the potential to create a more reliable and sustainable power system, and it carries the risk that customers are left paying for a gold-plated system that doesn’t deliver on its promises. The stakes are too high for regulators to take bets on grid modernization; a business case should eliminate concern that a vote to preapprove an investment plan is a gamble.

The bottom line is that regulators should not let the utility off the hook to demonstrate that their investment plan is prudent and investments will be used and useful. Just as importantly, if the recovery mechanism shifts investment risks from the utility to the ratepayers, regulators should hold the utility accountable to the promises of a modern grid. A good business case will demonstrate these requirements to regulators.

ADVISORY Extreme Heat Storm Flex Alert Warning – Rotating Power Outages

Sonoma Clean Power offers Clean Energy Solutions at high prices through the participation in harvesting/fracking the Geothermal energy a Plant that PG&E and the Department of Energy over see, in Northern California.. This plant causes daily earthquakes, along with acid rain and midst.  The toxins emitted into humans and animals is excreted in the urine and causes concrete and rebar to degrade in wastewater treatment plants.

Just imagine what this corrosion is doing to buildings, homes, bridges, plumbing, water systems, and more.

 “Sonoma Clean Power” <>

Subject: Extreme Heat Storm

Date: September 5, 2020 at 1:55:02 PM PDT

Flex Alert for California is in Effect Dear Community, Due to the extreme heat storm, Sonoma and Mendocino Counties are being called on to again help California avoid rotating power outages this holiday weekend.  We ask you to please help the grid operators at CAISO by conserving energy. For today through Labor Day: Before 3 p.m., please: Pre-cool your houseDo laundryRun the dishwasherCharge your electric vehicleCharge laptops and phonesSet pool pumps to run in the early morning and late at night
Between 3 p.m. and 9 p.m., please: Set air conditioning to 78 degrees or higher, if health permitsAvoid using major appliancesTurn off all unnecessary lightsUnplug devices or turn off power stripsClose blinds and drapesLimit time the refrigerator is open
SCP is also monitoring weather forecasts, and a high wind event may occur between Monday night and Wednesday night, creating a risk that PG&E may call a Public Safety Power Shutoff.  Please check on Sunday and Monday to learn more, as we get closer. Finally, in these difficult times, please help us get these important messages out to your friends and neighbors so we can all prepare and be safe. Thank you, Chief Executive Officer  
Contact us  
SCP is here to help. If you have any questions or comments, you can always reach us by calling 1 (855) 202-2139 8:00 AM to 5:00 PM PST, Monday through Friday, or emailing us at Email Us   Sonoma Clean Power
50 Santa Rosa Ave., 5th Floor
Santa Rosa, CA 95404 You are receiving this email because you are subscribed to our “Announcements” list. You can manage your preferences below.   Tweet    Share    Forward  Preferences  |  Unsubscribe  

BLACK SKY EVENT – Power Outages – EIS Council • Protection Initiatives – Resilience



As concerns grow over severe Black Sky hazards, lifeline utilities and State and Federal government agencies have been systematically expanding initiatives seeking to mitigate such extreme events.  Resilience planning and investment represent the foundation on which any such mitigation efforts must be built.

As has often been said, “20-20 hindsight” following an extreme event comes too late to make the strategic investments that could have reduced the impact of such an event.  Nevertheless, planning and implementing such measures is often challenging, requiring decision makers and stakeholders to make investments to address projected risks which, while serious, may yield little or no immediate benefit.  And though hazards that have occurred with reasonable frequency suffer less from this investment challenge, emerging threats – even when projected consequences are extreme – are a much greater challenge.

Increasingly, this issue is being addressed by expanding the use of tabletop exercises to both simulate hazards and allow key stakeholders to explore the impact of such hazards, while considering the benefits and projected needs for resilience measures.  The EPRO Black Sky Hazard Event Simulation Project represents a new example of such exercises, helping  utilities, government agencies and other stakeholders evaluate the needs and benefits of specific resilience investments for Black Sky Hazards.

E-Threats:  An example of the growing focus on resilience

As an example of this expanding focus, resilience strategies for E-threats (EMP and GMD), as the newest examples of emerging Black Sky hazards, are receiving increasing industry attention, and are a special focus of the hazard protection section of the EPRO Handbook, Volume 1.

A key finding of recent studies, including the reports of the recently reestablished Congressional EMP Commission, is damage caused by both EMP and GMD, while affecting very large regions, is expected for only a fraction of exposed, vulnerable electrical and electronic components.  EMP, for example, will not destroy all electrical and electronic components, devices and systems in an affected area.  While complex, computer-intensive control systems (including unprotected power grid control systems) will typically fail or be disrupted, most electrical and electronic hardware in the region will likely survive.  This result is crucial, providing a foundation for planning a strategic framework for resilience, focusing on targeted, cost-effective investments to provide strategic, protected “enclaves” or protection of restoration-critical infrastructure. 

The E-PRO Handbook discusses this resilience strategy along with recommended companion measures for accelerated restoration, such as protection for control centers and selected, critical long lead equipment, properly stored and staged spares, and EMP-protected emergency vehicles, tooling and communication gear.  Implementing such strategies involves planning for a cost-effective combination of mitigation investments, operational measures and comprehensive power restoration planning. 

Expanding the focus on the power grid’s Black Start system: A critical requirement for Black Sky Hazard resilience 

The core resilience foundation of the three Electric Interconnections that make up the U.S. national power grid is the Black Start system: Generating stations and cranking paths designed to be capable of restarting – and functioning as a starting point for grid restart – following a local or regional power outage.  This system has been the subject of careful planning and investment, and is properly considered a reliable and essential basis for resilience of the power grid from the full range of “Gray Sky” hazards experienced in modern times.

The Black Sky / Black Start Protection Initiative (BSPI)

It is vitally important to note – that the Black Start system was not designed to address Black Sky Hazards.  The Black Sky / Black Start Protection Initiative (BSPITM) examines Black Sky- associated limitations of the Black Start system, along with recommended enhancements and system architecture adaptations, as a starting point to consider upgrades to that system to address the extreme hazard scenarios represented by Black Sky Hazards.

Black Sky Power Grid Restoration

An essential feature of any resilience plan is companion planning for effective use of the resilience investments.  For the power grid, for example, while it is certainly vital to ensure that essential tools and assets needed for Black Sky Hazards will be available when needed, these capabilities will only be effective if they are embedded in upgraded restoration and training plans.

# # # # One finding emerging from EPRO ESC meetings has been a concern, voiced frequently by senior power company executives, for availability of trained, specialized labor to handle the expected, unprecedented restoration workload.  These executives have pointed out that, typically, trained engineering teams capable of handling projected hazards like Cyber or EMP are already, in normal, Blue Sky Day scenarios, significantly understaffed.  In Black Sky Hazard scenarios, they point out, staff availability is likely to be significantly reduced, precisely at a time when far greater trained, expert engineering teams will be absolutely essential.

For Gray Sky Hazards, a mechanism to address this concern is now being explored by the power industry:  Expanding Mutual Assistance programs, currently designed to provide line crews and “bucket trucks” to move between companies and geographic regions to help address local or regional disasters, to include a similar capability to exchange engineering teams.

# # # # For Black Sky Hazards, such an expansion of conventional Mutual Assistance programs, while important and helpful, will not come even close to providing sufficient capability.  With widely distributed, multi-region power grid hardware and IT and OT system disruption and damage, finding, isolating and repairing problems will require far larger levels of trained engineering staff, and with many regions facing the same needs, availability of engineers from other utilities will be limited.

The CPR Engineering Team model

In these scenarios, one highly leveraging approach will be to build plans for supplementing staff, to address such emergencies, from outside the power industry.  The CPR Engineering Team Initiative lays out examples or templates for such a mechanism.  Based on plans for advance certification and periodic training of engineers with expertise in the appropriate disciplines, the CPR model would provide a capability for added engineering and technician staff, to expand the capabilities and be closely directed and utilized by the normal, internal corporate engineering teams that will be in very short supply for such emergencies.